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Abstract
Collaborative filtering (CF) enables large-scale recommendation sys-

tems by encoding information from historical user-item interactions

into dense ID-embedding tables.However, as embedding tables grow,

closed-form solutions become impractical, often necessitating the

use of mini-batch gradient descent for training. Despite extensive

work on designing loss functions to train CF models, we argue that

one core component of these pipelines is heavily overlooked:weight
decay. Attaining high-performing models typically requires careful

tuning ofweight decay, regardless of loss, yet its necessity is notwell

understood. In this work, we questionwhy weight decay is crucial in
CFpipelinesandhow it impacts training.Throughtheoretical andem-

pirical analysis,we surprisinglyuncover thatweightdecay’sprimary

function is to encode popularity information into the magnitudes of

the embedding vectors. Moreover, we find that tuning weight decay

acts as a coarse, non-linear, knob to influence preference towards

popular or unpopular items. Based on these findings, we propose

PRISM (Popularity-awaRe Initialization Strategy for embedding

Magnitudes), a straightforward yet effective solution to simplify

the training of high-performing CF models. PRISM pre-encodes the

popularity information typically learned throughweight decay, elim-

inating its necessity. Our experiments show that PRISM improves

performance by up to 4.77% and reduces training times by 38.48%,

compared to state-of-the-art training strategies. Additionally, we

parameterize PRISM tomodulate the initialization strength, offering

a cost-effective and meaningful strategy to mitigate popularity bias.

CCS Concepts
• Information systems→Retrieval models and ranking.
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1 Introduction
The vast amount of online data poses significant challenges for

content navigation and discovery [8]. In response, recommender

systems have become essential to distill content into a manageable

set of personalized recommendations [11, 14, 29, 31, 38]. At the core

of many recommender system is collaborative filtering (CF), a tech-

nique that leverages historical user-item preferences to generate

new recommendations [5, 30]. Among the most prominent CFmeth-

ods is matrix factorization (MF), which translates sparse historical

interaction data into dense embeddings by learning low-rank user

and item matrices [19, 32, 37]. Recent advancements in MF have

also considered incorporating non-linearities through multilayer

perceptrons (MLPs) [6, 9, 17], as well as message-passing, to enable

the encoding of richer user-item interactions [16, 34].

When training CF models, closed-form solutions become imprac-

tical with large datasets [1], leading to the use of iterative learning

algorithms, such as mini-batch gradient descent [27, 36]. However,

despite their empirical success, gradient-basedmethods cannot guar-

antee an optimal solution [26]. Thus, significant effort has been de-

voted to designing losses that improve the optimization of these

approaches [32]. One core design consideration is deciding which

geometric properties of the embeddingvectors tooptimize. Early loss

functions, such as Bayesian Personalized Ranking (BPR) [27], lever-

age the dot product similarity between interacted pairs, promoting

the learning of both magnitude and angle information. In contrast,

more recent loss functions have shifted to prioritize meaningful

angles, e.g. through the use of cosine similarity [36] or normalized

embeddings [2, 32]. We refer to these as angle-based losses given the
loss values are not impacted by embedding magnitude. These losses

have shown exceptional model performance, leading to a continued

prioritization of angle-based optimization [20, 25].

Despite angle-based losses superior performance, a notable in-

consistency frequently arises in their evaluation – the application of

weight decay. Most angle-based losses recommend careful tuning of

weight decay [25, 32, 36], yet they lack justification for its necessity
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given weight decay regularizes the embedding magnitudes. Even
moresurprising, angle-based lossesdisplayhighsensitivity toweight

decay strength, leading to significant performance degradation if not

properly tuned (shown inFigure 1). This seemingly contradictoryyet

necessary application ofweight decay on losses that do not explicitly

leverage magnitude information leads us to pose the question:

Why is weight decay crucial to learning high-performing
CFmodels, and what properties does it encode?

Understanding howweight decay influences training allows us to

discern the roles of magnitude and angle information. However,

practically, the process of tuning weight decay becomes infeasible

as the datasets grow, potentially leading to poor performance if the

optimal strength is not found.Moreover, incorporatingweight decay

can be costly given it requires frequent parameter updates to large

embedding tables which may not be loaded in memory. Thus, this

inconsistency between angle-based losses and weight decay not

only highlights the importance of deeply understanding weight de-

cay’s role, but alsomotivates the exploration of alternative strategies

capable of efficiently encoding similar properties.

Webegin by systematically analyzing state-of-the-art (SOTA) loss

functions to evaluate the properties they encode into the embedding

matrices. Although many of these losses are angle-based, we un-

expectedly discover that the magnitudes of the embedding vectors

capture the underlying popularity information, a behavior more

typically associated with losses that use both magnitude and angle.

Through comprehensive analysis, we show that weight decay is the

direct cause of this phenomenon, resulting from imbalancedgradient

updates across parameters due to mini-batch gradient descent. Sur-

prisingly, we find that this magnitude encoding is crucial for angle-

based loss functions to achieve SOTA performance; without the

popularity encoding fromweight decay, performance significantly

regresses. In fact, more complex losses (e.g. DirectAU), are often out-
performedby simple baselines (e.g.BPR)whenweight decay is not ap-
plied, raising importantquestionsaroundwhatdesignsarenecessary

for achieving high performance. Thus, our first contribution is the in-

sight that weight decay is essential for angle-based losses to achieve

SOTA through the encoding of popularity information, and angle

information is only partially responsible for their high performances.

Buildingonouranalysis,wequestionwhetherweightdecay isnec-

essary for achieving high performance. As angle-based losses focus

on angle information, while weight decay encodes magnitude infor-

mation correlated with popularity, we introduce a cost-effective ini-

tialization strategy calledPRISM: aPopularity-awaRe Initialization
Strategy for the embeddingMagnitudes. PRISM splits the learning

of angle and magnitude by directly integrating popularity informa-

tion into the embedding magnitudes, allowing training to focus on

learning angle information. By replacing weight decay with PRISM,

our models achieve similar performance to those trained with weight
decay, without the need for costly hyperparameter tuning. Addition-

ally, we find thatmodels trained with PRISM converge on average 38%
faster than those reliant on weight decay, as the latter requires a con-
siderable number of epochs to encode magnitude information. We

additionally incorporate an encoding strengthparameter intoPRISM

that enables performance equal to, or better than, the best weight

decay-tuned models, with significant performance improvements

on less popular items. Collectively, our contributions provide a new

fundamental understanding of CF training and offer insights into the

role ofweight decay in this process. Our key contributions are below:

(1) LinkingWeight Decay to Popularity:We establish the neces-

sary role of weight decay in CF by theoretically and empirically

demonstrating its link to encoding popularity. This insight chal-

lenges current understanding of SOTA performance, as many

high-performing training strategies fail without weight decay.

(2) Popularity-aware Initialization for Embedding Magni-
tudes: WeproposePRISM,amagnitude-basedembedding initial-

ization strategy that is efficient and easy to implement, requiring

a single computation at the onset of training. PRISM is able to

eliminate the need for weight decay without performance loss.

(3) Practical Benefits ofRemovingWeightDecay: Through our
parameterization of PRISM, we demonstrate that if one chooses

to hyperparameter tune the initialization strategy, there are sig-

nificant potential benefits, including (a) improved model perfor-

mance, (b) accelerated training times, and (c) effectivemitigation

of popularity bias. This tuning capability highlights the practical

utility and flexibility of PRISM in real-world scenarios.

2 Preliminaries and RelatedWork
In this section, we offer an overview of CF, with a focus on model

backbonesand loss functiondesigns.Wealso formalize thegeometric

properties pertinent to user and item embeddings.

2.1 Collaborative Filtering
Collaborative filtering leverages historical interaction data, 𝐸, to

learn user and item embeddings. Given a set of 𝑛 users,𝑈 , and a set

of𝑚 items, 𝐼 , the interaction matrix is denoted as E ∈ Z𝑛×𝑚 . User

and item embeddings are represented by U ∈ R𝑛×𝑑 and I ∈ R𝑚×𝑑
,

where𝑑 represents the dimensionality of the embedding vectors. MF

is a prevalent approach to learning these embeddings due to its abil-

ity to capture latent factors that influence interactions. Specifically,

for a user 𝑢’s embedding u and an item 𝑖’s embedding i, MF aims

to encourage that E𝑢,𝑖 ≈u · i⊤. Despite MF possessing closed form

solutions [1], in practice, MF is trained with mini-batch gradient

descent given the entire interaction matrix generally cannot fit into

memory. Thus, significant effort has been invested in improving

these gradient-based training methods.

Recent advancements have extended MF by incorporating differ-

ent embedding functions. The most prominent approaches revolve

around utilizing deep neural networks (DNNs) to introduce non-

linearities into the interaction calculations [17]. As an example, user

and itemmatrices can be processed through DNNs 𝐹 and𝐺 , trans-

forming the interaction calculation such that E≈𝐹 (U) ·𝐺 (I)⊤. Addi-
tionally, some approaches explore replacing the dot product with a

learnable function, suchasusing aDNN,𝐻 , to computeE𝑢,𝑖 ≈𝐻 (u| |i)
where | | denotes concatenation. [6, 33, 40]. Graph-based CF has also
been proposed, utilizingmessage passing to propagate user and item

information [13, 16, 34]. While MF and its neural network variants

rely on their loss functions to determine which geometric properties

of the embedding vectors are optimized during training, message-

passing architectures have been shown to inherently encode mag-

nitude information [36]. As such, we explore how different losses

prioritize magnitude versus angle information during training.
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Figure 1: Performance with VaryingWeight Decay: BPR (top) and DirectAU (bottom). Increasing the strength of weight decay
demonstrates a preference towards itemswith high popularity.Weight decay strength of 10−4 is omitted for BPR as it causes
performance to approach 0 due to over-regularization. Filled regions denote standard deviation over 3 runs.

2.2 Embedding Vector Geometry
The design of loss functions is crucial in guiding the gradient de-

scent process to encode meaningful information. Although losses

can leverage various mechanisms, we focus primarily on whether

a loss emphasizes encoding magnitude or angle information. Below,

we formalize the notion of an angle-based loss.

Definition 2.1. Angle-based Loss. For embedding vectors u and i,
a loss function 𝐿(u,i) is an angle-based loss if it satisfies the condition
𝐿(u,i)=𝐿(𝑐1u,𝑐2i), where 𝑐1 and 𝑐2 are arbitrary scalars.

Given Definition 2.1, an angle-based loss does not depend on

the magnitudes of the embedding vectors, focusing instead on their

relative angles. For example, the cosine similarity loss remains un-

changed regardless of vector magnitudes. Similarly, computing the

Euclidean distance between normalized vectors, as in DirectAU or

MAWU, also ignoresmagnitudes. In contrast, losseswithout this con-

straint, like BPR and its dot product similarity metric, can learn both

magnitude and angle information. Exact formulations of these losses

aregiven inAppendixB.4. It is important tonote thatourdefinitionof

angle-based loss pertains only to the loss computation itself. Conse-

quently, thegradientdescentprocessusinganangle-based lossmaystill
alter both magnitude and angle information of the embeddings. We

delve into this distinction in Section 3.2, explaining how angle-based

losses encode popularity information, leveraging this property.

2.2.1 What do these properties encode? Understanding the impor-

tance ofmagnitude versus angle information inmodernCF pipelines

has gainedmore attention, but is still limited in scope. One investiga-

tion into this distinction is seen in the SSM loss, which emphasizes

the benefits of prioritizing angle information [36]. However, the

strong empirical performance of SSM heavily relies on a mecha-

nism for learning magnitude, achieved through message passing.

Other losses, such as DirectAU andMAWU, also emphasize angle

importance by promoting uniformity of non-interacted samples on

the hypersphere [25, 32]. Despite this, these approaches employ

weight decay during training without addressing the role of magni-

tude information in their performance. Subsequent work explicitly

links magnitude information to popularity by examining the mag-

nitude distribution in trained models [4]. Given this relationship,

many prevalent post-hoc popularity de-biasing methods utilize re-

weighting strategies based on itempopularity [3, 43]. Thesemethods

apply weighting to item scores, thereby implicitly modulating the

magnitude of embedding vectors. Similar mitigation strategies are

observed in graph-based collaborative filtering, where the strength

of magnitude normalization is adjusted [42].

Despite efforts to remove popularity information from learned

embeddings through altering magnitudes, it is important to note

that popularity is not inherently negative. Popular items are typi-

cally favored by a large user base, and effectively leveraging these

popularity signals can enhance model performance [18, 20]. Given

this perspective, we concentrate on establishing how embedding

magnitudes encode popularity information, particularly in angle-

based losses. Then, by explicitly controlling magnitude information,

we can effectively capture the advantages of popularity information.

In the next section, we present analyses that lay the foundation for

understanding howmagnitude information is encoded.

3 Understanding the Role ofWeight Decay
In this section, we investigate the role of weight decay by addressing

two initial research questions: (RQ1) Is weight decay necessary?

(RQ2)What properties does weight decay encode into the embed-

ding matrices? To answer these questions, we conduct a series of

empirical studies to assess the influence ofweight decay onCFmodel

training. Through this investigation, we reveal weight decay’s sur-

prising relationship with popularity. Building on these insights, we

perform a theoretical analysis to further explain why this phenome-

non occurs. To begin, we introduce the datasets, models, and losses,

used in our empirical analyses, as well as the evaluation strategy.
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(a)WithWeight Decay (𝜆=1×10−6): The strong correlation indicates
that weight decay encodes the popularity information.

(b) Without Weight Decay (𝜆 = 0): The weak correlation highlights
that popularity information is not encoded.

Figure 2: Comparison of BPR and DirectAU embeddingmagnitudes based on the presence or absence ofWeight Decay.

3.1 Empirically Validating
the Importance ofWeight Decay

We start by empirically assessing weight decay, focusing on its in-

fluence on performance and answeringRQ1 andRQ2.
Experimental Setup.We focus on four standard recommender sys-

tem datasets: MovieLens1M[15], Gowalla [7], Yelp2018 [39], and

AmazonBook [23]. Detailed characterizations of these datasets are
available in Appendix A.1. We apply several model backbones to

these datasets, including a linear and non-linearMF (utilizesMLPs to

transform the embeddings
1
). In Appendix D.1, we additionally pro-

vide results for LightGCN [16]. The choice of these backbones allows

for awide rangeof foundational interactioncalculations that are seen

inmanydifferent architectures.We trainon fourdistinct ranking loss

functions, 𝐿𝑟𝑎𝑛𝑘 , including BPR, SSM, DirectAU, andMAWU, and

hyper-parameter tuned weight decay. The full loss 𝐿 is specified as:

𝐿=
∑︁

(𝑢,𝑖 ) ∈B
𝐿𝑟𝑎𝑛𝑘 (𝑢,𝑖)+

𝜆

2

(∑︁
𝑢

∥u∥2+
∑︁
𝑖

∥i∥2
)
, (1)

where the ranking loss is applied to data batches𝐵. Theweight decay

strength, 𝜆, is applied to the user and itemmatrices during each gra-

dient descent step. Further implementation details, including archi-

tectures, losses, and hyperparameters, can be found in Appendix B.

For evaluation, we use the NDCG@20 metric to assess overall

performance. Additionally, following [41], we conduct a stratified

analysis by categorizing items based on their popularity. For each

user, the overall NDCG@20 is decomposed into separate NDCG@20

scores for popular, neutral, and unpopular items. Detailed equations

and stratification cutoffs are provided in the Appendix B. By assess-

ing how different items contribute to overall performance, we can

1
Non-linear MF is utilized given the generally poorer results seen in pairwise neural

models [28]

accurately determine when a model is making use of popularity in-

formation, as opposed to the latent features within the embeddings.

3.1.1 (RQ1) IsWeightDecayNecessary? Foreachof theCFpipelines,

weexaminescenarioscorrespondingtodifferentweightdecaystrengths,

denoted as 𝜆, starting at 0, and gradually increasing up to 0.0001.

At each level, we calculate overall NDCG@20, along with stratified

NDCG@20 values for popular, neutral, and unpopular items. Intu-

itively, larger discrepancies between these stratified metrics suggest

a stronger reliance on popularity information during ranking.

In Figure 1, we present representative results from training MF

models with BPR and DirectAU. Note that DirectAU follows the

definition of an angle-based loss, while BPR does not. Our first obser-

vation is a clear dependence on weight decay for DirectAU, where

a poor choice of weight decay significantly degrades perfor-
mance. This finding shows that while DirectAU and other angle-

based loss functions can achieve high performance, such outcomes

depend on carefully tuning weight decay to effectively encode pop-

ularity information, rather than being an intrinsic property of the

loss function itself. For instance, when subjected to weak weight

decay, DirectAU’s performance can degrade to the extent that BPR

surpasses it, as observed in datasets like MovieLens1M and Gowalla.
Interestingly, these variations in overall performance result from

a systematic trade-off of performance on unpopular items for per-

formance on popular items, as reflected in the stratified metrics in

Figure 1. Moreover, this trade-off is strongly correlated with the

strength of weight decay. Thus, our second observation is that as
weight decay strength increases, models exhibit greater dis-
crepancies in performance between these item categories.
Since BPR can inherently encode popularity information through its

dot product similarity function, even without weight decay, we find

that the performance gap between popular and unpopular items is
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less pronounced compared toDirectAU. Results for SSMandMAWU,

as well as non-linear MF, follow similar trends and are provided in

Appendix D given space constraints.

3.1.2 (RQ2)What properties does weight decay encode? To under-

stand the underlying mechanism of this phenomenon, we examine

the distribution of magnitude values within the embedding tables.

In Figure 2a, we plot item magnitudes for BPR and DirectAU as a

function of itempopularity, calculated from the training set, formod-

els trained with moderate weight decay (𝜆=1×10−6). Surprisingly,
regardless of whether models were trained with BPR or Di-
rectAU, both show a high correlation between the embedding
magnitudes and the underlying popularity information. Since
DirectAU’s loss is designed to encode meaningful angles between

users and items, the process by which this magnitude information is

encoded is not immediately clear. To further clarify the role ofweight

decay,we analyze themagnitude distributions in Figure 2bwith𝜆=0.

In this scenario, the correlation is significantly reduced, and mini-

mal popularity information is encoded within the embeddings. To

formalize why weight decay induces this correlation, we provide

a theoretical analysis in the next section showing how popularity

information is encoded into the itemmagnitudes.

3.2 Theoretical Connection Between
Weight Decay and Popularity Information

Building on our empirical findings demonstrating a relationship

between item magnitude and popularity information induced by

weight decay, we aim to develop a theoretical explanation for this

phenomenon, bolstering our answer toRQ1 andRQ2. To achieve
this, we analyze the gradient descent process for Equation (1). We

begin by characterizing the probability that an interaction is sam-

pled into a batch, determining its likelihood of receiving a ranking

loss update. Using this probability, we then solve for the expected

magnitude update under the gradient descent process.

3.2.1 ProbabilityofSamplingan Interaction inaBatch. AsCFmodels

are typically trained usingmini-batch gradient descent, only a subset

of the full interaction set 𝐸 is used during each update. However, in

many settings, weight decay is applied to the full embedding tables

unless a custom implementation is specified. Therefore, we first

establish the probability that an interaction is included in the batch

and receives a gradient update for both the ranking loss and weight

decay. Otherwise, the embedding update is solely fromweight decay.

Setup.We assume that the ranking loss is applied to batches of data

𝐵, where |𝐵 | ≤ |𝐸 |. Then, for an item 𝑖 with 𝑑𝑖 interactions, i.e. the

degree of the item in the interaction graph, Observation 3.1 specifies

the probability that item 𝑖 will appear in 𝐵. This result is derived in

Appendix C.1.

Observation 3.1. For an item 𝑖 , the probability of appearing in a
batch 𝐵 is given by:

𝑃 (𝑖 ∈𝐵)=1−
(
1− |𝐵 |

|𝐸 |

)𝑑𝑖
. (2)

Takeaway. Equation (2) demonstrates that an item 𝑖 is more likely

to appear in a batch when either: (a) the item is of high popularity

or (b) the batch size is large relative to the interaction set. In the next

section, we use this result to explain how the popularity information

is encoded into the embedding vectors.

3.2.2 Asymmetric Gradient Updates Encode Popularity Information.
Leveraging Observation 3.1, we now describe the expected gradient

descent process for Equation (1). Notably, when an item is included

in a batch, it receives gradient updates from both the ranking loss

and weight decay. However, when an item is not in a batch, it only

receives an update fromweight decay. We refer to this difference in

gradients as asymmetric updates and demonstrate how this asymme-

try encodes popularity information within the embedding vectors.

Setup.We assume that 𝐿𝑟𝑎𝑛𝑘 in Equation (1) is an angle-based loss,

specifically focusing on cosine similarity. It is important to note that

other losses encoding positive interactions, such as the alignment

term in DirectAU, are equivalent to cosine similarity up to a con-

stant when using normalized embeddings [22]. We then analyze the

gradient descent process for Equation (1) to determine the expected

change in magnitude for an item embedding i on the 𝑘𝑡ℎ gradient
descent step. The expression for this relationship is presented in

Theorem 3.2. We use 𝜂 to denote the learning rate and 𝜆 to denote

the strength of weight decay.

Theorem 3.2. For a user 𝑢 with interacted item 𝑖 , the expected
change in the item’s magnitude after the 𝑘𝑡ℎ gradient descent step,
E[Δ∥i(𝑘+1) ∥2], when trained with asymmetric updates of cosine sim-
ilarity and weight decay, is expressed as:

E[Δ∥i(𝑘+1) ∥2]= E[∥i(𝑘 ) ∥2]𝜂𝜆(𝜂𝜆−2)︸                     ︷︷                     ︸
Weight Decay Contribution

+ (3)

(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
︸              ︷︷              ︸

P(i ∈ B)

E
[ 𝜂2

∥i(𝑘 ) ∥2

(
1− (u(𝑘 ) ·i(𝑘 ) )2

∥u(𝑘 ) ∥2∥i(𝑘 ) ∥2

)]
.︸                                       ︷︷                                       ︸

Ranking Loss Contribution

Proof. We give the proof for this result in Appendix C.2. □

Takeaway. Thefirst term reflects the change inmagnitude resulting

fromweight decay, while the second term represents the change in

magnitude due to cosine similarity. Although weight decay lowers

an item’s magnitude during each gradient descent iteration, we

showAppendix C.2 that an item’s magnitude increases as a result

of the cosine similarity (This is also seen in the SSL setting [12] ).

Moreover, the ratioof increasesprovidedbycosinesimilarity, relative

to the decreases fromweight decay, is governed by the probability

established in Observation 3.1. Thus, one can expect that an item
𝑖’s popularity level, 𝑑𝑖 , will be encoded into 𝑖’s embedding via
its magnitude. In Appendix C.2, we further analyze this equation
for different levels of |𝐵 | and 𝑑𝑖 to demonstrate how typical dataset

properties and batch sizes contribute to strong popularity encoding.

Note that if weight decay is not applied, both terms are scaled by 𝑑𝑖 ,

mitigating the asymmetric updates that encode popularity encoding

(shown in Appendix C.3). Additionally, in Appendix C.4 we provide

a corollary of Theorem 3.2 showing that negative sampling can

partiallyalleviatepopularityencoding,but requires the full setofnon-

interacted items tobeusedasnegative samples to fully solve the issue.
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4 Removing the Need forWeight Decay
In the previous section, we established thatweight decay’s core func-

tion is to encode popularity information. With this understanding,

we first explore potential alternatives to weight decay that leverage

existing strategies, such as batching or message passing. Although

we show that weight decay can be removed in certain settings with

such strategies, the learning setups typically require significant

concessions on performance or speed. Thus, we then tackle the

following question: (RQ3) Can the information typically learned

through weight decay be directly encoded into the embedding ma-

triceswithout a performance or speed compromise? Our goal is to

remove the need for weight decay in the training process, thereby

simplifying optimization and eliminating the necessity for extensive

hyperparameter tuning to find the optimal weight decay strength.

Leveraging our new insights, we introduce PRISM, a strategy that

pre-encodes popularity information directly, effectively decoupling

magnitude and angle learning.

4.1 Previous Alternatives toWeight Decay
We first explore existing methods to simplify or replace weight de-

cay while highlighting their limitations. We begin by examining a

batched weight decay that does not require full embedding updates

and then consider certain losses and architectures that explicitly

encode magnitude information.

4.1.1 BatchedWeight Decay. In large-scale settings, one strategy is
to applyweight decay at the batch-level, meaningweight decay only

updates users or items in the current batch. This approach treats all

items equally (setting 𝑃 (𝑖 ∈𝐵) to 1 in Theorem 3.2), removing the de-

pendency on popularity for magnitude changes. However, as shown

in Figure 3, performance with batched weight decay is extremely

poor, matching the performance when 𝜆=0. Thus, we conclude that

the batched weight decay is not an effective strategy to reduce
the computational demands of full weight decay. This result
also highlights that the benefit of weight decay does not inherently

arise from the regularization itself, but rather from the asymmetric

updates that encode popularity. This conclusion is further supported

by the magnitude distributions in Figure 3 which closely resemble

those in Figure 2b when 𝜆=0.

4.1.2 Strategies that Directly Encode Magnitude. We have shown

that weight decay’s benefit lies in encoding popularity into the

magnitudes. Thus, we hypothesize that methods that directly learn

magnitudes do not gain asmuch benefit fromweight decay. From the

perspective of losses, those involving the dot product can inherently

learn magnitude information, as seen in Figure 1, where BPR’s over-

all performance changes are small compared to DirectAU. However,

BPR also generally underperforms, making it a poor alter-
native to weight decay. Additionally, certain architectures, such
as LightGCN, can encode magnitude during learning, regardless of

loss [36]. We verify our hypothesis that such architectures would

not benefit from weight decay by examining LightGCN’s perfor-

mance across different weight decay levels. Our analysis (Figure 8)

showsLightGCNmaintains relatively consistent performance across

weight decay levels, indicating its independence fromweight decay.

However, although LightGCNdoes not requireweight decay, it

Figure 3: DirectAU (angle-based loss) Performance with
Varying Batched Weight Decay. The performance across
batched weight decay strengths are highly similar andmatch
performance without weight decay (𝜆=0). Itemmagnitudes
for Batched Weight Decay strength equal to 1 × 10

−6 is
provided for comparison.

is also challenging to integrate into large-scale pipeline, mak-

ing it an impractical solution for learning magnitude information.

4.2 PRISM: Popularity-awaRe Initialization
Strategy for EmbeddingMagnitudes

To eliminate the need for weight decay, we propose PRISM, a strat-

egy that pre-encodes learned magnitude information during initial-

ization. By incorporating this information upfront, the optimization

process can focus on learning angle information, rather than encod-

ing popularity.We note thatmagnitudemodulation has traditionally

been an in-processing strategy, often employed to reduce popularity

bias [18]. Therefore, our pre-processing approach opens a new av-

enue for improving training, facilitated by insights fromour analysis.

PRISM specifically leverages the observed log-linear relationship

between popularity and magnitudes (as seen in Figure 2a and The-

orem 3.2), and initializes the embedding magnitudes using the log of

their corresponding popularity. Specifically, we start with initial em-

bedding vectors i𝑖𝑛𝑖𝑡 , which can be generated through any initializa-
tion strategy, and normalizes them to unit vectors. PRISM then scales

these unit vectors according to their popularity. Thus, for an item

𝑖’s embedding iwith popularity level 𝑑𝑖 , the initialization is give by:

i= (𝛼 ·log(𝑑𝑖+2)+(1−𝛼)) ·
i𝑖𝑛𝑖𝑡
∥i𝑖𝑛𝑖𝑡 ∥

, (4)

where the trade-off parameter 𝛼 modulates the strength of the en-

coding, allowing for a linear interpolation between fully encoding

popularity information (𝛼 =1) and simply initializing as unit vectors
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Table 1: Performance comparison between models trained with weight decay and PRISM. Highly similar performances
demonstrate that PRISM is effective at replacing weight decay without the need for any tuning of parameter updates.

Backbone Loss TrainingMethod MovieLens1M Gowalla Yelp2018 AmazonBook

MF

SSM
TunedWeight Decay 0.3061 ± 0.0004 0.0999 ± 0.0068 0.0616 ± 0.0070 0.0609 ± 0.0066

PRISM 0.3002 ± 0.0018 0.1033 ± 0.0021 0.0605 ± 0.0002 0.0598 ± 0.0049

% Diff -1.97% 3.30% -1.82% -1.84%

DirectAU
TunedWeight Decay 0.2406 ± 0.0000 0.1176 ± 0.0003 0.0735 ± 0.0002 0.0719 ± 0.0003

PRISM 0.2304 ± 0.0011 0.1210 ± 0.0000 0.0745 ± 0.0002 0.0755 ± 0.0004

% Diff -4.42% 2.81% 1.34% 4.77%

MAWU
TunedWeight Decay 0.2455 ± 0.0011 0.1332 ± 0.0006 0.0745 ± 0.0015 0.0877 ± 0.0002

PRISM 0.2376 ± 0.0005 0.1331 ± 0.0014 0.0739 ± 0.0016 0.0891 ± 0.0004

% Diff -3.33% -0.08% -0.81% 1.57%

Non-LinearMF

SSM
TunedWeight Decay 0.2785 ± 0.0013 0.0860 ± 0.0010 0.0502 ± 0.0002 0.0343 ± 0.0005

PRISM 0.2330 ± 0.0025 0.0728 ± 0.0006 0.0389 ± 0.0023 0.0287 ± 0.0001

% Diff -19.53% -18.10% -29.04% -19.51%

DirectAU
TunedWeight Decay 0.2318 ± 0.0006 0.0989 ± 0.0012 0.0646 ± 0.0004 0.0573 ± 0.0004

PRISM 0.2502 ± 0.0012 0.1105 ± 0.0024 0.0698 ± 0.0005 0.0714 ± 0.0004

% Diff 7.36% 10.51% 7.44% 19.77%

MAWU
TunedWeight Decay 0.2405 ± 0.0029 0.1274 ± 0.0029 0.0670 ± 0.0001 0.0800 ± 0.0006

PRISM 0.2600 ± 0.0006 0.1326 ± 0.0015 0.0691 ± 0.0003 0.0881 ± 0.0001

% Diff 7.50% 3.91% 3.04% 9.19%

(𝛼 =0). We use log(𝑑𝑖+2) to ensure that cold-start items are not re-

duced to a zero-magnitude vector. Next, we demonstrate that PRISM

is able to achieve the performance of models tuned for weight decay

by simply setting 𝛼 =1 and initializing the embedding magnitudes.

5 Empirical Analysis of PRISM
In this section, we leverage PRISM and establish how effective it is

at replacing weight decay. We additionally provide analysis on how

PRISMcanbeused toexpedite training (§5.2.1), aswell as improve the

performance of unpopular items, mitigating popularity bias (§ 5.2.2).

5.1 Effectiveness of ReplacingWeight Decay
Employing a similar setup as described in Section 3.1, we eliminate

weight decay from training and instead initialize embedding vec-

tors according to Equation (4), with 𝛼 = 1. Notably, this approach

eliminates the need for: (a) hyperparameter tuning beyond model-

or loss-specific parameters, and (b) full access to the user and item

embedding tables. As in Figure 1, we compare both overall and strati-

fied performancemetrics formodels using our initialization strategy

against those utilizing traditional tuned weight decay.

In Table 1, we compare the performance of models tuned with

weight decay against those trained with PRISM.We emphasize that

with PRISM, a singlemodel is trainedwithout the need for tuning. In

both linear and non-linear MFmodels, PRISM generally demon-
strates comparable or even superior performance tomodels
trained with weight decay. For example, linear MFmodels using

PRISMshowanaverageperformance changeof just 0.12%, indicating

nearly identical aggregate performance. Additionally, for non-linear

MFmodels trained with DirectAU andMAWU, PRISM delivers an

8.59% performance boost. These findings underscore PRISM’s prac-

tical benefits, demonstrating that we can eliminate weight decay

without sacrificing performance, particularly for SOTA losses. How-

ever, we note that non-linear MFmodels trained with SSM display

an average performance decline of 21.61%. This likely stems from

SSM’sheavy relianceonpopularity information [36],whichbecomes

challenging to recover after passing throughMLP layers. This is fur-

ther explained in Appendix C.4.2 where we show how SSM lacks a

mechanism to maintain popularity information through the MLPs.

Despite this, we anticipate that PRISMwill prove advantageous in

most practical applications, and we attribute this specific issue more

to the combination of SSM and non-linear MLPs.

5.2 Benefits Beyond Performance
In this section, we explore the advantages of removing weight decay

from the training process, beyondmerelymatching the performance

of weight-decay-tuned models. Specifically, we pose the question:

(RQ4)What opportunities does our initialization strategy present?

We focus on twomain areas: training efficiency and themitigation of

popularitybias. For this analysis,weuseDirectAUasa representative

angle-based loss to illustrate these additional benefits.

5.2.1 Training Speed Benefits. By appropriately tuning 𝛼 in PRISM,

wedemonstrate thatmodels can train significantly faster, as this elim-

inates extended training periods typically devoted to encoding pop-

ularity. In Figure 4 we present the performance relative to the num-

ber of training epochs for various popularity encoding strengths 𝛼 .

Notably, several𝛼 levels not only accelerate training but also outper-

formmodels fully trained with weight decay. While the underlying
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Figure 4: DirectAU Performance versus Number of Training Epochs to Early Stopping. Tuning 𝛼 allows for models with
comparable performance to train significantly faster. Moreover, higher 𝛼 tends to create higher performing models beyond
what is attainable with weight decay.
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Figure 5: DirectAU Performance with Varying 𝛼 . Decreasing 𝛼 naturally trades-off popular for unpopular item performance
withminimal loss to overall performance.

reasons for this behaviorwill be discussed in the next section, we em-

phasize that across all datasets, models trained with PRISM achieve

comparable performance with a significantly faster training process

with appropriate 𝛼 . For instance, Gowalla exhibits the largest reduc-

tion in training time, with a 49.80% improvement going from 249 to

125 training epochs.On average, PRISMachieves training speed
improvements of 38.48% for comparable performingmodels.
Although some datasets, such as AmazonBook, show an increase

in training epochs with higher 𝛼 , this tends to additionally enhance

performance.Weattribute this to themodel continuing to learnmore

semantically meaningful angles when popularity information has

already been encoded. This is shown in Figure 6, in the Appendix,

where the cosine similarity measure quickly saturates early during

training, while models spend considerable epochs gradually encod-

ingpopularity information, indicatedbyacontinuousrise indotprod-

uct metrics. Thus, through PRISM, models are able to focus on learn-

ingmeaningful angles for a longer duration, enhancing performance.

5.2.2 Popularity Bias Mitigation Benefits. Second, we investigate
the impact on popularity bias. We find that by directly adjusting

𝛼 , we can effectively mitigate this bias and provide a meaningful

mechanism to trade off preference toward popular or unpopular

items. We demonstrate this phenomenon in Figure 5 where we ob-

serve that PRISM can produce a variety of high-quality models that

maintain similar overall performance by effectively balancing the

trade-off between popular and unpopular item performance. Al-

though one might expect that reducing the performance of popular

items would result in a net decline, our findings indicate that the

improvements in neutral and unpopular item performance can lead

to an overall positive effect. To evaluate the extent of improvement

in unpopular item performance, we analyze the ratio of unpopular

NDCG@20 to popular NDCG@20, which measures the relative con-

tribution of each to the overall performance. On average, PRISM

achieves an average 75.98% improvement in this metric for the best

performing model (selected by validation NDCG@20) alongside an

additional average increase of 1.7% in overall performance for these

de-biased models. Thus, our results show that 𝛼 serves as an ef-
fective knob, allowing users to prioritize either popular or
unpopular itemswithout compromising performance. We fur-

ther compare PRISM to three de-biasing methods in Appendix D.2,

showing comparable improvements over these baselines.
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6 Conclusion
In this work, we uncovered a surprising link between weight de-

cay and the encoding of popularity information into embedding

magnitudes. Our analysis shows that weight decay is crucial for

achieving state-of-the-art (SOTA) performance, especially in losses

lacking alternative mechanisms for encoding popularity. Given the

performance sensitivity to weight decay and the costs associated

with tuning, we propose PRISM, a Popularity-aware Initialization

Strategy for embeddingMagnitudes. PRISMdirectly integrates popu-

larity information into embeddingmagnitudes, effectively replacing

the need for weight decay and its associated hyperparameter tuning.

By decoupling angle andmagnitude learning, PRISM enablesmodels

to achieve comparable or superior performance with faster conver-

gence. Additionally, by tuning the popularity encoding strength

of PRISM, we demonstrate the potential for mitigating popularity

bias and enhancing the ranking of less popular items. Our work not

only revises traditional CF training practices but also provides new

insights into the underlying reasons for certain behaviors. Further-

more, our practical solution through PRISM facilitates lightweight,

scalable, and efficient training of recommendation systems.
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A Appendix
A.1 Dataset Statistics and Information
Belowwe provide information regarding the datasets used within

the paper. Specifically, we provide their statistics in table 2, focusing

on the number of users and items, and number of interactions. We

additionally provide the density of each dataset as # Interactions/(#

Users × # Items), which is discussed within the empirical analysis.

Table 2: Dataset Statistics.

Dataset # Users # Items # Interactions Density

MovieLens1M 6,040 3,629 836,478 3.82%

Gowalla 29,858 40,981 1,027,370 0.08%

Yelp2018 31,668 38,048 1,561,406 0.13%

AmazonBook 52,643 91,599 2,984,108 0.06%

For the stratified analysis, we follow [41] and group items into

popular, neutral, and unpopular as the top 5%, the top 5-20% and

bottom 80%, respectively. The stratified NDCG@K calculation in

provided in Appendix B.2.

B Experimental Details
In this section we provide details on the experimental setup. While

this is primarily introduced in Section 3.1, we use this setup through-

out the paper unless otherwise specified. We begin with the hyper-

parameters considered in the work, then go on to discuss evaluation

and implementations.

B.1 Hyperparameters and Tuning
For all models, the embedding tables are initialized using PyTorch’s

uniform Xavier strategy. For experiments where we utilize PRISM,

the embeddings are normalized row-wise, and then scaled via the

popularity information. Cross-validation over NDCG@K perfor-

mance is used to find the best model, searching over learning rates

{0.1,0.01,0.001}. and weight decays {0.0,1𝑒−4,1𝑒−6,1𝑒−8}. The em-

bedding dimensions are kept at 64.While linearMFhas no additional

parameters, we include two MLP layers for non-linear MF with a

ReLU activation. For LightGCN, we set a depth of 3. The models are

trained for up to 1000 epochs, with early stopping employed over

validation NDCG@K (setting K=20) with a patience of 10. For exper-

iments which utilize SSM, we set a negative sampling ratio of 10. For

DirectAU, we additionally cross-validate𝛾 values from {1.0,2.0,5.0},
as recommender in the original paper [32]. For MAWU, we utilize

the recommended hyper-parameters for the datasets provided, and

only cross-validate the loss-specific hyper-parameters for Movie-

Lens in the range specified by the paper. The batch size for BPR, SSM,

DirectAU, andMAWU training are set to roughlymaximize size that

can fit within memory, which is 16384 for BPR and SSM, and 4096

for DirectAU andMAWU. The train/val/test splits are random and

use 80%/10%/10% of the data.

B.2 Evaluation
To evaluate our models, we look at overall NDCG@K, as well as

stratified NDCG@K. NDCG@K is calculated for a particular user𝑢

and interaction matrix E as:

NDCG@K𝑢 =
DCG@K𝑢

IDCG@K𝑢

(5)

and

DCG@K𝑢 =

𝐾∑︁
𝑖=1

E𝑢,𝑖
log

2
(𝑖+1) .

To attain IDCG@K𝑢 , we compute the optimal DCG@K𝑢 for the𝐾

retrieved items by sorting them in descending order relative to their

relevancy. We note that we let 𝐾 = min(20,𝑁 (𝑢)), where 𝑁 (𝑢) is
the number of elements a user 𝑢 interacts with. Then, each user’s

NDCG value can span the full range from 0 to 1. The final metric is

the average over all of the users.

For our stratifiedmetrics,wedecompose the fullNDCG@Kmetric

based on the different popularity sets of items. Specifically, we retain

the same IDCG@K across the stratified metrics, but mask out values

in E𝑢,𝑖 (setting them to 0) if the item is not in the popularity group

that the metric is computed over. Thus, when summing each of the

stratified NDCG@Kmetrics for a particular user, the resulting sum

is equal to the full NDCG@K.

B.3 Implementation
The MF backbones and losses are implemented within vanilla Py-

Torch. LightGCN is implemented using PyTorch Geometric. Data

loading and batching is additionally implementedwith PyTorchGeo-

metric’s dataloader. We use approximate negative sampling for BPR

and SSM, as seen in PyG’s documentation for their LinkNeighbor-

Loader, meaning there is a small chance some negative samples may

be false negatives. Each model is trained on a single NVIDIA Volta

V100 GPU.

B.4 Loss Function Definitions
The loss functions used in the paper are outlined below.

B.4.1 Bayesian Personalized Rank (BPR). BPR is one of the earli-

est recommendation loss functions, operating by maximizing the

difference between interacted and non-interacted items for each

user [10, 27]. Specifically, for a user 𝑢, interacted item 𝑖 , and non-

interacted item 𝑖′, the BPR loss is:

𝐿𝐵𝑃𝑅 =
∑︁

(𝑢,𝑖,𝑖′ ) ∈D
ln𝜎 (𝑒𝑢,𝑖−𝑒𝑢,𝑖′ ), (6)

where 𝑒𝑢,𝑖 is the similarity between𝑢 and 𝑖 . BPR’s original implemen-

tation uses the dot product between𝑢 and 𝑖 to attain similarity scores.

B.4.2 Sampled Softmax (SSM). SSM is a set-wise loss which gener-

alizes the single negative sample seen in BPR [24, 36]. SSM leverages

a subset of negative samples, increasing the expressive power and

regularization strength. SSM is expressed as:

𝐿𝑆𝑆𝑀 =
∑︁

(𝑢,𝑖 ) ∈E
−log

exp(𝑒𝑢,𝑖 )
exp(𝑒𝑢,𝑖 )+

∑
𝑖′∈𝑆exp(𝑒𝑢,𝑖′ )

, (7)

where 𝑆 is the set of negative samples. Typically, SSM is equipped

with cosine similarity to compute 𝑒𝑢,𝑖 .

https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.LinkNeighborLoader
https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.LinkNeighborLoader
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B.4.3 DirectAU. DirectAU utilizes an alignment and uniformity

term to both encourage positive pairs to have similar embeddings,

while scattering uninteracted pairs on the hypersphere. The align-

ment component of DirectAU is specified as:

𝐿𝑎𝑙𝑖𝑔𝑛 =
∑︁

(𝑢,𝑖 ) ∈E
∥u−i∥2, (8)

where (𝑢,𝑖) are observed user-item interactions. The uniformity

term is given by

𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 = log
∑︁

(𝑢,𝑢′ ) ∈𝑈
𝑒−2∥u−u

′ ∥2+log
∑︁

(𝑖,𝑖′ ) ∈𝐼
𝑒−2∥i−i

′ ∥2 . (9)

We point out that the embeddings are normalized for the alignment

and uniformity term, meaning that DirectAU is an angle-based loss

despite using metrics that typically depend on magnitude.

B.4.4 MAWU. MAWU extends DirectAU by including margin pa-

rameters oneachuser and item to increase discriminativepowerover

interacted and non-interacted pairs. Typically, this is applied on top

of cosine similarity. Moreover, the user and item uniformity terms

are each given unique hyper-parameters. Thus, the core difference

is in the alignment term, expressed as:

𝐿𝑚𝑎𝑟𝑔𝑖𝑛−𝑎𝑙𝑖𝑔𝑛 =−
∑︁

(𝑢,𝑖 ) ∈E
cos(𝜃𝑢,𝑖+𝑀𝑢+𝑀𝑖 ), (10)

where𝑀𝑢 and𝑀𝑖 denote the learned margin variables.

B.5 Validation Performance Plots
To understand when weight decay provides value during training,

we track the validationNDCG@20 as calculatedwith both the cosine

similarity and dot product metrics. Intuitively, performance under

cosine similarity takes advantage solely of the learned angle infor-

mation, while the dot product metric allows for both the magnitude

and angle information. In Figure 6we give an example set of training

curves for DirectAU trained on Gowalla and Yelp2018. We can see

that for the best performingweight decay levels, a significant portion

of time is spent improving the dot product-based NDCG@20, while

the cosine similarity-based NDCG@20 saturates relatively quickly.

From this, we argue that a significant portion of training time tends

to come from weight decay encoding popularity information, as

opposed to learning meaningful angles from DirectAU.

C Theoretical Analysis
In this section, we provide the proofs and analysis for the theory

provided in Section 3.2. We begin with our derivation of Observa-

tion 3.1, and then provide the proof for Theorem 3.2. Afterwards, we

provide supplemental analysis for the theorem.

C.1 Derivation of Observation 1
The goal of this observation is to give an equation to represent the

asymmetric update process, particularly specifying the probability

of a particular item receiving an in-batch vs. out-of-batch gradient

update.We begin by denoting a batch of interactions as𝐵, and the to-

tal number of interactions as𝐸.We assume that the sampling process

is uniform, and for simplicity, with replacement. While in practice

the sampling is performedwithout replacement, given |𝐸 |>> |𝐵 |, the
chance of repeatedly selecting a particular interaction is low. Then,
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Cosine similarity is used to capture the angle information,
and the dot product similarity is used to capture both angle
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early, a majority of training time is spent slowly encoding
popularity information into themagnitudes viaweight decay.

the probability that a particular interaction 𝑒 ∈𝐸 is sampled is
|𝐵 |
|𝐸 | .

We can then specify the compliment of this expression, and state the

probability of a particular interaction not being in the batch as 1− |𝐵 |
|𝐸 | .

We build on this expression and assess the probability that an

item, with 𝑑𝑖 interactions, has at least one interaction in the batch.

We begin by specify the probably that none of the interactions for

the item are in the batch, which is expressed as:

𝑃 (𝑖 ∉𝐵)=
𝑑𝑖∏(

1− |𝐵 |
|𝐸 |

)
=

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖
.

We then specify the compliment of this expression to express the

probability that at least one interaction is within the sampled set.

This is given as:

𝑃 (𝑖 ∈𝐵)=1−
(
1− |𝐵 |

|𝐸 |

)𝑑𝑖
.

Wewill use this result in the next section to specify the probability

that an embedding receives an in-batch vs. out-of-batch gradient

update.

C.2 Proof of Theorem 1
The goal in this analysis to understand what properties get induced

into the user and item embeddings as a byproduct of the training loss

updating batched users and items, while the weight decay updates

all users and items. We will assume the chosen loss is the cosine

similarity. This loss will only update pairs of vectors who share an

edge, denoted by 𝐸. Specifically, the cosine similarity loss is:

𝑓 (u,i)= u·i
∥u∥∥i∥
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From here, we can study what happens to the embedding as the

training process unfolds. The full loss function can be specified, for

a batch 𝐵, as:

𝐿
full

=−©­«
∑︁

(𝑢,𝑖 ) ∈𝐵

u·i
∥u∥∥i∥

ª®¬+ 𝜆2
(∑︁
𝑢

∥u∥2+
∑︁
𝑖

∥i∥2
)

We then have the gradient descent (given we have a negative in

front of the cosine similarity term) update for an item 𝑖 ,
𝜕𝐿

full

𝜕i
can

be expressed as:

𝜕𝐿
full

𝜕i
=

{
−
(

u
∥u∥ ∥i∥ −

i(u·i)
∥u∥ ∥i∥3

)
+𝜆i,(𝑢,𝑖) ∈𝐵

𝜆i,𝑖 ∉𝐵

For brevity, we will assume that the interaction connected to item

𝑖 only appears once in the batch, which again is reasonable as the

dataset size grows. This will lead to two corresponding gradient

descent updates:

i(𝑘+1) =

{
i(𝑘 ) +𝜂

(
u

∥u∥ ∥i∥ −
i(u·i)
∥u∥ ∥i∥3

)
−𝜂𝜆i,(𝑢,𝑖) ∈𝐵

i(𝑘 )−𝜂𝜆i,𝑖 ∉𝐵

These can be simplified to:

i(𝑘+1) =

{
i(𝑘 ) (1−𝜂𝜆)+𝜂

(
u

∥u∥ ∥i∥ −
i(u·i)
∥u∥ ∥i∥3

)
,(𝑢,𝑖) ∈𝐵

i(𝑘 ) (1−𝜂𝜆),𝑖 ∉𝐵

We can compute the magnitude change as a byproduct of these two

possible gradient descent steps.

∥i(𝑘+1) ∥2=



(
i(𝑘 ) (1−𝜂𝜆)+𝜂

(
u

∥u∥∥i∥ −
i(u·i)
∥u∥∥i∥3

))
·
(
i(𝑘 ) (1−𝜂𝜆)+𝜂

(
u

∥u∥∥i∥ −
i(u·i)
∥u∥∥i∥3

))
, 𝑖 ∈𝐵(

i(𝑘 ) (1−𝜂𝜆)
)
·
(
i(𝑘 ) (1−𝜂𝜆)

)
, 𝑖 ∉𝐵

These can be simplified to:

∥i(𝑘+1) ∥2=
{
∥i(𝑘 ) ∥(1−𝜂𝜆)2+ 𝜂2

∥i(𝑘 ) ∥2
(
1− (u·i)2

∥u∥2 ∥i∥2
)
, 𝑖 ∈𝐵

∥i(𝑘 ) ∥(1−𝜂𝜆)2, 𝑖 ∉𝐵

We can then specify the expected magnitude after the 𝑘𝑡ℎ gradient

descent update using the law of total expectation:

E[∥i(𝑘+1) ∥2]=𝑃 (𝑖 ∈𝐵)E[
(
∥i(𝑘 ) ∥2 (1−𝜂𝜆)2 + 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

+𝑃 (𝑖 ∉𝐵)E[∥i(𝑘 ) ∥2 (1−𝜂𝜆)2]

By using our result from Observation 1, we can specify the prob-

ability 𝑖 ∈𝐵 and 𝑖 ∉𝐵, leading to:

E[∥i(𝑘+1) ∥2]=
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
·E[

(
∥i(𝑘 ) ∥2 (1−𝜂𝜆)2 + 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

+
(
1− |𝐵 |

|𝐸 |

)𝑑𝑖
E[∥i(𝑘 ) ∥2 (1−𝜂𝜆)2]

=E[∥i(𝑘 ) ∥2 (1−𝜂𝜆)2]

+
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
E[ 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

Then,

E[∥i(𝑘+1) ∥2]=E[∥i(𝑘 ) ∥2]+E[∥i(𝑘 ) ∥2 (𝜂2𝜆2−2𝜂𝜆)]

+
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
E[ 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

Wecanthenexpress thedifference inexpectedmagnitudes,E[Δ∥i(𝑘+1) ∥2]
as:

E[Δ∥i(𝑘+1) ∥2]=E[∥i(𝑘 ) ∥2]𝜂𝜆(𝜂𝜆−2)

+
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
E[ 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

□

Analyzing theMagnitude Update Equation. We begin by study-

ing the first term in the equation, which is contributed by weight

decay. For reasonable values of 𝜂 and 𝜆, generally less than 1, clearly

the first term is negative. Thus, we can expect the weight decay term

to decrease the magnitudes of the embeddings.

The more interesting case is the second term. As the probability

term is greater than or equal to 0, we focus on the update term pro-

vided by cosine similarity. Specifically, we want to understand how

this will change the embedding magnitudes. Let us first study when

the contribution is greater than 0, then it is the case that:

1≥
(
(u·i(𝑘 ) )
∥u∥∥i(𝑘 ) ∥

)
2

→∥i(𝑘 ) ∥2∥u∥2 ≥ (u·i(𝑘 ) )2

= ∥i(𝑘 ) ∥∥u∥ ≥ (u·i(𝑘 ) ).
This statement is true for all vectors given the Cauchy-Schwarz in-

equality. Then, let us assume studywhen the contribution is less than

0, constituting a decrease in magnitude. This would lead to the case:

1<

(
(u·i(𝑘 ) )
∥u∥∥i(𝑘 ) ∥

)
2

→∥i(𝑘 ) ∥∥u∥< (u·i(𝑘 ) )

which violates the Cauchy-Schwarz inequality. Thus, we can con-

clude that the second term is strictly positive and will increase the

embedding magnitude of i

Further Analysis. In Figure 7 we plot the expected magnitude

change for typical values ofweight decay, learning rate. Additionally,

wefix thedotproduct termtobe0.9 for explanatorypurposes.Within

the plot, the x-axis denotes the popularity or degree information
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Figure 7:Theoreticalmagnitude changes for itemembeddings
as a function of popularity and batch size, relative to dataset
size. At the extremes, such as when the batch size is close to
0, the update produces highly similar updates (either none, or
similar positivemagnitude). However, for values away from
these extremes, we get strong correlation between degree and
magnitude change, explaining our empirical results.

in log scale, while the y-axis denotes the batch size, scaled relative

to the full dataset size. The colors represent the magnitude change

of the item embedding. We can see that for reasonable batch-sizes,

typically in the range of 0.01 to 0.05, there is clear differentiation in

magnitude updates as a function of popularity. Thus, at this level,

we can expect strong encoding of popularity information.

Discussion. In practice, weight decaymaynot be applied to all users

or items, such as in distributed settings. However, as long as there

remains an asymmetry between the weight decay and loss updates,

magnitude encoding will persist, as this asymmetry influences the

probability term in Theorem 3.2. The specific probability for a dis-

tributed setting is dependent on implementation details, including

how embedding tables are partitioned and the strategy used for ap-

plyingweight decay. That said, inmost popular deep learning frame-

works, such as PyTorch, weight decay is applied to all parameters

attached to the optimizer, not just those used in the loss computation.

Thus, the asymmetry in updates is a default behavior inmany setups.

In the next section, we explore the implications of removing this

asymmetry fromthe trainingprocess, aswell as examinehowvarious

architectures affect the learning ofmagnitude and angle information.

C.3 Proof of Corollary 1:
Batched vs. Full TableWeight Decay

In this section,wewant to assess how themagnitude update changes

for in-batchweight decay updates, as opposed to full table updates.
Using the cosine similarity loss function,we can express the gradient

descent process for an item 𝑖 as,

i(𝑘+1) =

{
i(𝑘 ) (1−𝜂𝜆)+𝜂

(
u

∥u∥ ∥i∥ −
i(u·i)
∥u∥ ∥i∥3

)
,(𝑢,𝑖) ∈𝐵

i(𝑘 ) ,𝑖 ∉𝐵

The update equations are nearly identical, but now the gradient is 0

for the instance thedatapoint is notwithin thebatch.The subsequent

expected magnitudes after the 𝑘𝑡ℎ gradient descent update step are,

E[∥i(𝑘+1) ∥2]=𝑃 (𝑖 ∈𝐵)E[
(
∥i(𝑘 ) ∥2 (1−𝜂𝜆)2 + 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

+𝑃 (𝑖 ∉𝐵)E[∥i(𝑘 ) ∥2]

Plugging in the probability of sampling a particular interaction

within a batch and simplifying, we attain the change in magnitude

update as,

E[Δ∥i(𝑘+1) ∥2]=
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
E[∥i(𝑘 ) ∥2]𝜂𝜆(𝜂𝜆−2)

+
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
E[ 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

ImplicationsofResult:Whencomparing to thecaseof full tableup-

dates,wecansee that thesecondtermisexactly thesame,andthus the

only difference is on the first term. Intuitively, having the probability

exist on both termsmeans that the degree information can no longer

create a discrepancy between the magnitude dampening that occurs

by weight decay, and the magnitude increases incurred by the co-

sine similarity gradient. Instead, both updates always occur, and the

changes in an item’s magnitudes are dependent the properties of the

userand itemembeddings themselves, i.e. theonly thing that changes

across epochs would be the dot product and magnitude terms.

We note that is can still be possible that the magnitudes can sys-

tematically go up or down given the dot product and magnitude

terms. Specifically, if an item continually has a low dot product score

with an interacted user, the cosine similarity gradient termwill have

a large positive value. However, the key finding is that the popularity

information has nomeans of being explicitly encoded aswas the case

in the full table updates. Empirically, this is verified in Figure 3where

the use of batched weight decay demonstrates an extremely weak

correlation between popularity and degree, especially as compared

to Figure 2a where batched weight decay is employed.

C.4 Proof of Corollary
2: Negative Sampling andWeight Decay

In this section, we further generalize Theorem 3.2 to incorporate

negative sampling. Specifically, we assume that for each positive

user-item pair within the batch, there are 𝛾 non-interacted items

sampled from the dataset. Across all positive user-item pairs, we

assume that thenegative samples are distinct anduniformly sampled,

meaning there are 𝛾 |𝐵 | total negative samples, and (𝛾 +1) |𝐵 | total
user-item pairs within the batch.

C.4.1 Updating Probability of Ranking Update. We first must up-

date Observation 3.1, as now an item can either be sampled from the

positive user-item interactions, or as a negative sample, meaning

𝑃 (𝑖 ∈𝐵)=𝑃 (𝑖 ∈𝐵+∪𝑖 ∈𝐵−), where 𝐵+ are the positive interactions,
and 𝐵− are the negative interactions. We know 𝑃 (𝑖 ∈𝐵+) from Ob-

servation 3.1, thus, we now need to find 𝑃 (𝑖 ∈ 𝐵−). First, negative
samples are chosen randomly from the item set for each user. Thus,

it is possible to choose from |𝐼 | different items as negative samples,

meaning for each user, an item may appear in the negative batch

given the probability 𝑃 (𝑖 ∈𝐵−)= 𝛾

|𝐼 | . Note that while excluding the
positive samples from this set is ideal,most popular implementations
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use approximate negative sampling which simply uses the full item

set, aligning with our setup. Then, given our assumption that the

negative samples across users in the batch are distinct,which is likely

with a sufficiently large item set, the probability that an item is in the

negative batch sample set across all users is given by𝑃 (𝑖 ∈𝐵−)= 𝛾 |𝐵 ||𝐼 | .
Notably, while positive samples are dependent on the popularity of

an item, the negative sampling does not depend on the popularity.

Given we did not condition on the specific user-item interaction

pair when choosing items to be used as negative samples, we can

view the generation of the positive and negative batches as inde-

pendent events. Again, as long as the item set is large, the fraction

of negative samples is much smaller than the item set size, these

assumptions are reasonable. Then,

𝑃 (𝑖 ∈𝐵+∪𝑖 ∈𝐵−)=1−𝑃 (𝑖 ∉𝐵+∩𝑖 ∉𝐵−)
1−(1−𝑃 (𝑖 ∈𝐵+) (1−𝑃 (𝑖 ∈𝐵−))

1−
(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 (
1−𝛾 |𝐵 ||𝐼 |

)
With this result,wecanspecifywhenan item, either fromthepositive

or negative set, will experience a ranking loss update.

C.4.2 Updated Ranking Loss. We can now study how positive and

negative item embeddings are updated during training. The full

loss with positive and negative samples can be specified, for a batch

𝐵=𝐵+∪𝐵− , as:

𝐿
full

=−©­«
∑︁

(𝑢,𝑖+ ) ∈𝐵

u·i+
∥u∥∥i+∥

ª®¬+©­«
∑︁

(𝑢,𝑖− ) ∈𝐵

u·i−
∥u∥∥i− ∥

ª®¬
+ 𝜆
2

(∑︁
𝑢

∥u∥2+
∑︁
𝑖

∥i∥2
)

where 𝑖+ denotes a positive sample, and 𝑖− denotes a negative sample.

By minimizing this loss, positive pairs are optimized to have a larger

cosine similarity,while negative pairs are optimized tohave a smaller

cosine similarity.We can now compute the partial derivative of𝐿𝑓 𝑢𝑙𝑙
with respect to 𝑖+ and 𝑖− , with the difference being the sign in front
of the in-batch gradient.

𝜕𝐿
full

𝜕i+
=−

(
u

∥u∥∥i+∥ −
i+ (u·i+)
∥u∥∥i+∥3

)
+𝜆i+,(𝑢,𝑖+) ∈𝐵

𝜕𝐿
full

𝜕i−
=

(
u

∥u∥∥i− ∥ −
i− (u·i−)
∥u∥∥i− ∥3

)
+𝜆i−,(𝑢,𝑖−) ∈𝐵

Otherwise, the gradient is just 𝜆iwhen 𝑖 ∉𝐵. We can formulate

the respective gradient descent steps as:

i+,(𝑘+1) = i+,(𝑘 ) (1−𝜂𝜆)+𝜂
(

u
∥u∥∥i+∥ −

i+ (u·i+)
∥u∥∥i+∥3

)
,(𝑢,𝑖+) ∈𝐵

i−,(𝑘+1) = i−,(𝑘 ) (1−𝜂𝜆)−𝜂
(

u
∥u∥∥i− ∥ −

i− (u·i−)
∥u∥∥i− ∥3

)
,(𝑢,𝑖−) ∈𝐵

However, as shown in the proof of Theorem 3.2, when solving for

the magnitude change, the cross term for the vector norm cancels

out. Thus, despite 𝑖 and 𝑖′ having different signs in front of the cosine
similarity gradient, the resulting magnitude updates are the same

(just in opposite directions). Thus, we can combine the two update

equations and specify the expected magnitude for an arbitrary item

in the batch, 𝑖 that is either in the positive or negative set. Then,

using the same simplification process in Appendix C.2,

E[Δ∥i(𝑘+1) ∥2]=E[∥i(𝑘 ) ∥2]𝜂𝜆(𝜂𝜆−2)+

1−
((
1− |𝐵 |

|𝐸 |

)𝑑𝑖 (
1−𝛾 |𝐵 ||𝐼 |

))
E[ 𝜂2

∥i(𝑘 ) ∥2

(
1− (u·i)2

∥u∥2∥i∥2

))
]

Given our expression, it is clear the core difference is the inclusion

of the negative sampling probability, which we can interpret as a

modulation term between 0 and 1 on the original probability of

not being included in the batch. When 𝛾 |𝐵 | is small relative to |𝐼 |,
which is likely in large datasets, we should expect similar magnitude

encodingas seen in thenon-negative samplingcase.However, as𝛾 |𝐵 |
approaches |𝐼 |, the update tends to behave similar to that of the in-

batch negative sampling where there is no discrepancy in coefficient

between the weight decay and ranking loss updates (except now the

coeffecient is 1).

Implications of Result: From a popularity perspective, negative

sampling tends to reduce the encoding of popularity information as

the negative sampling rate increases. This can be seen given that the

out-of-batch probability term will go down, resulting on a higher

overallweight on the cosine similarity term. Interestingly [22] draws

a connection between the number of negative samples and the rank

of the underlying user and item embedding matrices, while [20]

links the underlying rank of the user and itemmatrices to popular-

ity bias. Thus, Corollary 2 offers a new perspective on how these

relationships may come about in settings where weight decay is

applied, specifically showing how negative sampling encourages a

dampening of 𝑃 (𝑖 ∈𝐵), which directly induces popularity bias.

C.5 Assessing Different SimilarityMetrics
In this section, we extend our analysis on cosine similarity to include

two other similarity functions, the dot product and Euclidean dis-

tance. We follow a similar analysis to that in Appendix C.2 to assess

how these losses differ during optimization. Beginning with the dot

product, the loss becomes,

𝐿
full

=−©­«
∑︁

(𝑢,𝑖 ) ∈𝐵
u·iª®¬+ 𝜆2

(∑︁
𝑢

∥u∥2+
∑︁
𝑖

∥i∥2
)

for a batch 𝐵. The gradient for an in-batch and out-of-batch sample

can then be expressed as,

𝜕𝐿
full

𝜕i
=

{
−u+𝜆i,(𝑢,𝑖) ∈𝐵
𝜆i,𝑖 ∉𝐵

leading to gradient descent steps of,

i(𝑘+1) =

{
i(𝑘 ) (1−𝜂𝜆)+𝜂u,(𝑢,𝑖) ∈𝐵
i(k) (1−𝜂𝜆),𝑖 ∉𝐵
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Then, the expected magnitude change can be expressed as,

E[Δ∥i(𝑘+1) ∥2]=E[∥i(𝑘 ) ∥2 (𝜂2𝜆2−2𝜂𝜆)]

+
(
1−

(
1− |𝐵 |

|𝐸 |

)𝑑𝑖 )
E[2(𝜂−𝜂2𝜆) (u·i)+𝜂2∥u∥2]

As the only change made in this setup was to the choice of ranking

loss, the first term in the expected change is the same to the cosine

similarity case of Appendix C.2. However, the change as a result of

the ranking loss is significantly different. Most notably, the update

as a result of the dot product gradient can no longer be bounded as

a non-negative real number, thus, the magnitude change may either

be positive or negative. While the amplification caused by the batch

probability still exist, a certain behavior cannot be assessed for the

dot product and is dataset, as well as initialization, dependent.

Next, we consider the Euclidean distance, as is used in DirectAU

andMAWU of the main text. While the DirectAU andMAWU losses

use normalized vectors when computing the loss, the gradient com-

putation can still impact the magnitudes, similar to that of the dot

product. We specify the updated loss as:

𝐿
full

=
©­«

∑︁
(𝑢,𝑖 ) ∈𝐵

∥u−i∥2ª®¬+ 𝜆2
(∑︁
𝑢

∥u∥2+
∑︁
𝑖

∥i∥2
)

The gradient for an in-batch and out-of-batch sample can then be

expressed as,

𝜕𝐿
full

𝜕i
=

{
2(i−u)+𝜆i,(𝑢,𝑖) ∈𝐵
𝜆i,𝑖 ∉𝐵

leading to gradient descent steps of,

i(𝑘+1) =

{
i(𝑘 ) (1−2𝜂−𝜂𝜆)+2𝜂u,(𝑢,𝑖) ∈𝐵
i(k) (1−𝜂𝜆),𝑖 ∉𝐵

Then, the respective magnitude changes are,

∥i(𝑘+1) ∥2=

(
1−𝜂 (1+𝜆)

)
2∥i(𝑘 ) ∥2+2𝜂

(
1−𝜂 (1+𝜆)

)
i(𝑘 ) ·u

+𝜂2∥u∥2, 𝑖 ∈𝐵(
1−𝜂𝜆

)
2∥i(𝑘 ) ∥2, 𝑖 ∉𝐵

From here, it becomes obvious that the core difference in the up-

date equation and Theorem 3.2 stems from the dot product between

the item and user embedding, which can be either positive or neg-

ative. Thus, using the Euclidean norm introduces a mechanism to

allow the gradient to possess sensitivity to magnitude information.

This is in contrast to the cosine similarity result of Theorem 3.2

where the update is strictly positive, regardless of the specific user

or item embeddings.

Implications of Result:We use this result to explain the degra-

dation observed when using SSMwith PRISM for a non-linear MF

model, as seen in Table 1. Specifically, this result stems from the

inherent nature of the SSM loss, where SSM uses cosine similarity,

which is invariant to vectormagnitudes and does not directly reward

the preservation of the popularity signal that PRISM pre-encodes.

When paired with non-linear MF with MLP layers, the transforma-

tion lacks the incentive tomaintainmagnitudedifferences; as a result,

the pre-encoded popularity information is gradually washed out,
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Figure 8: Results for LightGCN trainedwith DirectAU. Across
weight decay levels, we see that performance is highly
consistent, indicating that LightGCN does not greatly benefit
fromweight decay.

leading to degraded performance. In contrast, DirectAU does not

suffer from this issue because its alignment term, although computed

on normalized vectors, leverages Euclidean distance during back-

propagation and retains a dependence on the original magnitudes.

This gradient reintroduces magnitude sensitivity, ensuring that the

popularity signal from PRISM is preserved even in the presence

of non-linear transformations. Thus, the observed degradation in

the SSM case is not a flaw of PRISM itself but rather a consequence

of the loss function and model architecture that fail to propagate

magnitude information effectively.

D Additional Empirical Results
In this section we provide additional empirical results to support the

claims in the main text.

D.1 Results on LightGCN
In this section we provide analysis on LightGCN, demonstrating the

fact that message-passing directly encodes popularity information

and does not greatly benefit fromweight decay. In Figure 8 we show

performance across weight decay levels for Gowalla and Yelp2018,

trained with DirectAU.While there are subtle changes in the pop-

ular and unpopular performance metrics, these are significantly less

pronounced than the changes we see for DirectAU applied to MF.

Thus, from a practical perspective, we conclude that LightGCN does

not need weight decay when trained.

D.2 Results on Debiasing
To demonstrate the effectiveness of PRISM’s debiasing capabilities,

we compare it to three strong benchmarks including ReSN (spectral

regularization to dampen popularity information), IPL [21] (direct

regularization on popularity info), andMACR [35](causal debiasing).

For ReSN and IPL, the methods are applied to BPR as recommended

in their paper. For MACR, the BCE-based loss is utilized, again as

recommended. Hyperparameters are searched over the ranges pro-

vided in the original paper. In Figure 9, we plot the ratio of unpopular

to popular NDCG@20 versus the overall NDCG@20 performance.

The ratio of unpopular to popular NDCG@20 metrics measures the
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Figure 9: Results for BPR, DirectAU, Prism + DirectAU,
and De-biasing baselines. Unpopular NDCG@20 / Popular
NDCG@20 captures howwell themodel mitigates popularity
bias, and thus higher is better. PRISM + DirectAU produces
the best overall model in both performance and debiasing.

relative contribution of each on the overall performance, with a

higher ratio denoting a more fair model.

In Figure 9, we show these two results for BPR, DirectAU, PRSIM

with DirectAU, and the three de-biasing baselines. Specifically, mod-

els which are near the top of the plot are higher performing, while

models to the right experience less popularity bias. While we can

see that the de-biasing baselines indeed perform better than stan-

dard BPR, PRISM produces significantly better unpopular to popular

performance ratios, indicating better de-biasing.We note that better

performance comes from the use of DirectAU, however, it is with

PRISM that the de-biasing is achieved.

D.3 Results on SSM andMAWU forMF
To accompany the results in Figure 1, we provide similar results for

SSM andMAWU. As seen in Figure 10, the trends are highly similar

to the results of BPR and DirectAU, demonstrating the wide-spread

behavior of weight decay.

D.4 Results on Non-linearMF
To demonstrate that the weight decay results hold on neural-style

architectures, we provide similar results as seen in Figure 1 to non-

linear MF. As seen in Figure 11, the trends are again highly similar

across losses, where weight decay displays a strong correlation to

the gap between popular and unpopular performance. Interestingly,

non-linear MF’s utilization of MLPs has the capacity to modulate

the embedding magnitudes during message passing, which could

potential to disrupt the popularity encoding. Given these empiri-

cal results, we argue that this effect is not as significant, and these

models are still susceptible to weight decay’s popularity encoding.
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Figure 10: Performance with VaryingWeight Decay: SSM (top) andMAWU (bottom). Increasing the strength of weight decay
similarly demonstrates a preference towards items with high popularity.
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Figure 11: Performance with Varying Weight Decay for Non-linear MF: SSM (top), DirectAU (middle), and MAWU (bottom).
Across the losses, we see similar increases in popularity performance as a function of weight decay.
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